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Symbol-Error Probabilities for Pulse-Position
Modulation Signaling With an Avalanche

Photodiode Receiver and Gaussian
Thermal Noise

M. Srinivasan1 and V. Vilnrotter1

The calculation of symbol-error probabilities for uncoded pulse-position mod-
ulation using a Webb-modeled avalanche photodiode receiver in the presence of
additive Gaussian thermal noise is discussed. Performance curves for 256-ary pulse-
position modulation obtained through Monte Carlo simulation as well as a numerical
upper bound are presented. The Webb-plus-Gaussian model for the distribution of
the received signal is compared with the much simpler Gaussian-only approxima-
tion. Results are presented for both fixed and optimized values of the avalanche
photodiode gain parameter.

I. Introduction

The optical communication link currently under development for the X2000 program uses 256-ary
pulse-position modulation (PPM) as the data modulation format. On the receiving end, an avalanche
photodiode (APD) is used to detect the optical signal. The exact distribution of output electrons from the
APD has been given in [1,2] but is cumbersome to use and may be approximated very closely by the Webb
density function. In addition, the follow-on electronics contribute additive Gaussian thermal noise to the
APD shot noise, resulting in an output that most accurately is modeled with a mixture density consisting
of the convolution of discrete and continuous random variables. A simpler analysis involves modeling
both APD shot noise and Gaussian thermal noise as a single Gaussian process. In [3], a comparison
was made between these two approaches by calculating the resulting symbol-error probabilities for 4-
ary PPM. In that article, it was shown that for very low levels of background radiation, the Gaussian
approximation overestimates PPM symbol-error probability in the region Pe < 0.01. In this article,
we perform the same comparison for 256-ary PPM using both numerical evaluation and Monte Carlo
simulation. These results were compared with results obtained from the latest version of the Free-Space
Optical Communications Analysis Software (FOCAS) program for optical communication link design,2

which uses the Gaussian approximation. We show that in general the Gaussian approximation may
either overpredict or underpredict symbol-error probability by varying degrees depending upon the levels
of background and signal light levels. However, for the range of parameters relevant to the X2000

1 Communications Systems and Research Section.

2 M. Jeganathan and S. Mecherle, FOCAS 2.0: Free-Space Optical Communications Analysis Software, Optical Commu-
nications Group, Jet Propulsion Laboratory, Pasadena, California, May 1998.
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project, the Gaussian approximation used by FOCAS is adequate for the high background-photon-level
case without any adjustment factor. On the other hand, for low background-photon levels, the Gaussian
approximation overpredicts symbol-error probability, and an adjustment of approximately 1 dB is called
for. Finally, an upper bound on the error probability using the more accurate Webb-plus-Gaussian
mixture density is calculated and proposed as a more uniform method of estimating PPM symbol-error
probability.

II. APD Output Modeling

The average number of photons absorbed by an APD illuminated with total optical power P (t) in
Ts seconds can be expressed as

n̄ =
η

hν

∫ Ts

0

P (t)dt (1)

where h is Planck’s constant, ν is the optical frequency, and η is the detector’s quantum efficiency, defined
as the ratio of absorbed to incident photons. The actual number of photons absorbed, n, is a Poisson
distributed random variable with probability

p(n|n̄) =
n̄n

n!
e−n̄ (2)

The conditional probability that an APD generatesm electrons in response to exactly n absorbed photons,
m ≥ n, n > 0, has been shown by McIntyre to be [1]

p(m|n) =
nΓ
(

m

1− k + 1
)

m(m− n)!Γ
(
km

1− k + n+ 1
) [1 + k(G− 1)

G

]n+km/(1−k) [ (1− k)(G− 1)
G

]m−n
(3)

where G is the average APD gain and k is the ionization ratio. Averaging over the exact number of
absorbed photons, we obtain

p(m|n̄) =
m∑
n=1

p(m|n)
n̄n

n!
e−n̄, m ≥ 1 (4)

as the distribution of APD output electrons generated over Ts seconds given the mean number of absorbed
photons in that interval. If no photons are absorbed, then no electrons can be generated according to
this model. Conversely, no electrons are generated only if no photons have been absorbed. Hence,

p(m = 0|n̄) = p(n = 0|n̄) = e−n̄ (5)

An approximation to Eq. (4) has been derived by Webb [4] and provides a much simpler expression
for the density of m in response to the mean number of photons absorbed:
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pw(m|n̄) =
1

√
2πn̄G2F

(
1 +

m−Gn̄
n̄GF/(F − 1)

)3/2
exp

− (m−Gn̄)2

2n̄G2F

(
1 +

m−Gn̄
n̄GF/(F − 1)

)
 (6)

where F = kG + (2 − 1/G)(1 − k). This density is a continuous function that is defined for
m > −λG/(F − 1) and integrates to one in that range. The discrete probabilities in Eq. (4) are ap-
proximated by evaluating Eq. (6) at integer values of m. Note that Eq. (6) is defined for negative values
of m, provided m > −λG/(F − 1), even though negative m has no physical meaning. However, if the
probability density function is summed over the non-negative integers, a value of less than one is obtained,
as described in [5]. In the numerical evaluations presented here, we resolve this issue by calculating the
sum of the Webb density values for m ≥ 1 and assigning to p(m = 0|n̄) the value of this sum subtracted
from one. Incidentally, this method generally results in a closer approximation to the true distribution
value at m = 0 given by Eq. (5) than does the value given by evaluating Eq. (6) at m = 0.

Added to the random number of APD output electrons is an independent Gaussian thermal noise
charge from the follow-on electronics. The total charge then is integrated over each slot time Ts, resulting
in a vector of Q independent observables for each received PPM word. It was proven in [6] that, given
these observables, the maximum-likelihood detector structure consists of choosing the PPM symbol cor-
responding to the slot with the maximum accumulated charge value. If n̄b and n̄s are the mean number
of absorbed background photons per slot and the mean number of absorbed signal photons per pulse,
respectively, the Q-ary PPM symbol-error probability is

Pe(Q) = 1−
∫ ∞
−∞

p(x|n̄b + n̄s)
[∫ x

−∞
p(y|n̄b)dy

]Q−1

dx (7)

where p(x|n̄) is the probability density function for the slot statistic given n̄ mean number of absorbed
photons over the slot duration. Since the slot statistic is a random variable consisting of the sum of
independent Webb and Gaussian random variables, its density function is the convolution of the individual
densities and may be written as

p(x|n̄) =
∞∑
m=0

φ(x, µm, σ2)pw(m|n̄) (8)

where φ(x, µm, σ2) is the Gaussian density function with mean µm = mq + IsTs and variance σ2 =
(2qIs + [(4κT )/R])BT 2

s , as given in [3]. Here, q is the electron charge, κ is Boltzmann’s constant,
T is the equivalent noise temperature, B is the single-sided noise bandwidth, and Is is the APD surface
leakage current. Note that the APD surface leakage current is not multiplied by the APD gain and is
modeled here as a constant DC current. The APD dark current, on the other hand, is multiplied by the
APD gain and is modeled as part of the background radiation, i.e., it is incorporated into the value of n̄b.

An approach that sometimes is used to simplify calculation of PPM symbol-error probabilities is to
model the density of the APD output electron charge as Gaussian with mean qGn̄ and variance q2G2Fn̄.
Then the slot statistic consisting of the sum of APD output electrons and amplifier thermal noise also is
Gaussian and has mean µ = qGn̄+ IsTs and variance σ2 =

[
2q2G2Fn̄+ qIsTs + ([4κTTs]/R)

]
BTs. Al-

though simple, this approximation does not yield accurate results over all regions of interest, as previously
shown in [3] and as we demonstrate here.
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III. Calculation of Error Probabilities

Substituting Eq. (8) into Eq. (7), the PPM symbol-error probability may be expressed as [3]

Pe(Q) = 1−
∫ ∞
−∞

∞∑
m=0

φ
(
x, µm, σ

2
)
pw (m|n̄b + n̄s)

[∫ x

−∞

∞∑
n=0

φ
(
y, µn, σ

2
)
pw (n|n̄b) dy

]Q−1

dx

=
∞∑
m=0

pw (m|n̄b + n̄s)
∫ ∞
−∞

φ
(
x, µm, σ

2
)1−

[ ∞∑
n=0

pw (n|n̄b) Φ
(
x− µn
σ

)]Q−1
 dx (9)

where Φ(x) is the Gaussian distribution function Φ(x) =
∫ x
−∞(1/

√
2π)e−u

2/2du. The expression in Eq. (9)
is difficult and time-consuming to evaluate accurately, so an upper bound is calculated instead. Although
the union bound commonly is used for such Q-ary orthogonal signaling problems, a tighter bound was
derived by Hughes [7] and is applied here. By observing that the function f(u) = 1− [1−u]Q−1 is concave
for u ∈ [0, 1], Jensens’s inequality gives us E[f(u)] ≤ f(E[u]). Letting u =

∫∞
x
p(y|n̄b)dy and taking the

expectation over x with density function p(x|n̄b + n̄s), we then can show that

Pe(Q) =
∫ ∞
−∞

p (x|n̄b + n̄s)

(
1−

[∫ x

−∞
p(y|n̄b)dy

]Q−1
)
dx

=
∫ ∞
−∞

p (x|n̄b + n̄s)

(
1−

[
1−

∫ ∞
x

p (y|n̄b) dy
]Q−1

)
dx

≤ 1−
[
1−

∫ ∞
−∞

p (x|n̄b + n̄s)
∫ ∞
x

p (y|n̄b) dydx
]Q−1

(10)

The double integral within the brackets on the right-hand side of Eq. (10) is simply the probability that
a given background slot has a greater electron count than the signal-plus-background slot. This also may
be interpreted as the symbol-error probability for equiprobable binary PPM signaling, denoted as Pe(2),
and given by

Pe(2) =
∞∑
m=0

pw (m|n̄b + n̄s)
∫ ∞
−∞

φ(x, µm, σ2)
∞∑
n=0

pw(n|n̄b)Φ
(
−x− µn

σ

)
dx (11)

so that the upper bound on the Q-ary PPM symbol-error probability may now be expressed as Pe(Q) ≤
1− (1− Pe(2))Q−1. In the numerical evaluation of Eq. (11), the infinite sums and integral are truncated
to finite terms so that

Pe(2) =
M∑
m=0

pw (m|n̄b + n̄s)
∫ Bm

Am

φ
(
x, µm, σ

2
) N∑
n=0

pw (n|n̄b) Φ
(
−x− µn

σ

)
dx+ ε (12)

The limits M , N , Am, and Bm are found by using the error bounds given in the Appendix of [3], resulting
in truncation error ε.

4



Although the upper bound in Eq. (10) may be calculated relatively easily, it does require repeated
evaluation of the Webb density and nested summation and integration. Use of the Gaussian approximation
to the APD statistics saves computational time. Using this Gaussian approximation, the Q-ary PPM
symbol-error probability is given by

Pe,Gaussian(Q) =
∫ ∞
−∞

φ
(
x, µs, σ

2
s

) [
1− Φ

(
x− µb
σb

)Q−1
]
dx (13)

where µb = qGn̄b + IsTs, µs = qG(n̄b + n̄s) + IsTs, σ2
b =

[
2q2G2Fn̄b + qIsTs + ([4κTTs]/R)

]
BTs, and

σ2
s =

[
2q2G2F (n̄b + n̄s) + qIsTs + ([4κTTs]/R)

]
BTs [3].

The two expressions for evaluating PPM symbol-error probability given in equations Eqs. (10) and
(13) were calculated and compared using the following parameters, which were obtained from the FOCAS
program: Q = 256, Ts = 2×10−8 seconds, k = 0.007, Is = 2×10−9 amperes, T = 300 K, R = 146, 650 Ω,
and B = 1/2Ts = 2.5 × 107 Hz (1/2Ts is the noise equivalent bandwidth for an ideal integrator over
duration Ts). Calculations were performed for several different values of n̄b and n̄s. The APD gain
parameter G was treated in two ways. In one set of calculations, it was held fixed at 40.0. In another set
of calculations, G was optimized for each pair {n̄b, n̄s} by taking on the value resulting in minimum PPM
symbol-error probability. The fixed-gain results may be used to indicate the sensitivity of the system to
mismatch between the fixed-gain value and the optimal-gain value under actual operating conditions. In
addition to numerical evaluation, because the expression given in Eq. (10) is an upper bound, Monte Carlo
simulations of the receiver performance under the Webb model also were performed in order to obtain
more accurate results for lower signal-to-noise ratio (SNR) regions. In the Monte Carlo simulations, the
Webb deviates needed to simulate APD output were generated using the inclusion–exclusion principle [8]
following the method outlined in [9].

The results for G fixed at 40.0 are presented first. This value of G was obtained by using the FOCAS
program, which approximated it to be the gain value that maximizes the signal-to-noise ratio for n̄b = 150
and n̄s = 70 and the parameters given previously, corresponding to daylight operating conditions. For
this maximization, the SNR is defined in FOCAS3 as

SNR =
n̄2
s

F (n̄s + n̄b) + nds + nt
(14)

where bulk dark current electrons have been incorporated into n̄b, nds = IsTs/qG
2 is the surface leakage

current electron count, and nt = (NEI)2Ts/2q2G2 is the electron count from the amplifier noise equivalent
current, which is given by NEI =

√
4κT/R.

Figures 1 through 5 show plots of Pe versus n̄s for various values of n̄b. The three curves shown are
the error probability for the Webb model obtained through Monte Carlo simulation, the upper bound
for the Webb model as given by Eq. (10), and the error probability for the Gaussian approximation as
given by Eq. (13). From these figures, we see that the upper bound, Eq. (10), approaches the exact
error probability as given by the Webb simulation as Pe becomes small, but overbounds the simulated
error probability by about 0.4 to 0.75 dB at Pe = 0.02. On the other hand, the Gaussian approximation,
Eq. (13), is quite close to the Webb error probability for larger values of Pe, but diverges from it as Pe
becomes smaller. We also observe that the value of Pe below which the Gaussian model fails to be a good
approximation decreases as the background photon count n̄b increases. In Fig. 5 (corresponding to high
background-photon levels), the Gaussian approximation tracks the Webb error probability fairly closely
over a wide range of Pe values.

3 Ibid.
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Fig. 1.  A comparison of error probabilities
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Fig. 3.  A comparison of error probabilities
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In Fig. 6, the results from the previous figures have been compiled to show the number of absorbed
signal photons n̄s that are required in order to achieve fixed PPM symbol-error probabilities of Pe = 0.02
and Pe = 0.002, as the number of absorbed background photons n̄b varies. Note that the APD quantum
efficiency already has been factored into this figure (as well as the other figures in this article), as given
by Eq. (1). In order to obtain the required number of incident signal photons given a certain number of
incident background photons, both axes should be scaled by 1/η. In Fig. 6, curves for both the Webb and
Gaussian models are shown. We used the results from the Monte Carlo simulations to obtain the curve
for the Webb model, since the upper bound is not very tight at Pe = 0.02 and Pe = 0.002. In Fig. 6, we
also plot an approximate analytical expression for the n̄s versus n̄b curve that is obtained as follows: By
using the Gaussian model for the APD and the union bound on the PPM symbol-error probability, we
arrive at

Pe ≈
Q− 1

2
erfc

 qGn̄s√
2
(
q2G2F (2n̄b + n̄s) + 2qIsTs +

4κTTs
R

)
 (15)

Solving for n̄s, we obtain

n̄s ≈ A2F +A

√
A2F 2 + 4Fn̄b +

4IsTs
qG2

+
8κTTs
q2G2R

(16)

where A = erfc−1 ([2Pe]/[Q− 1]). We see from Fig. 6 that Expression (16) provides a close approximation
to the data for larger values of n̄b but overestimates n̄s at small values of n̄b.

In practice, it is possible to tune the APD gain according to the operating conditions in order to
achieve improved performance. In our second set of calculations, G was varied for each pair {n̄b, n̄s}

Pe  = 0.02, WEBB (SIMULATION)
Pe  = 0.02, GAUSSIAN
Pe  = 0.02, ANALYTICAL
Pe  = 0.002, WEBB (SIMULATION)
Pe  = 0.002, GAUSSIAN
Pe  = 0.002, ANALYTICAL
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Fig. 6.  Plots of ns versus nb at fixed PPM symbol-error
probabilities, G = 40.0.

nb
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in order to obtain the minimum error probability, rather than being held fixed at a particular value.
This process is performed for the Webb mixture model and the Gaussian model separately since, for a
particular pair {n̄b, n̄s}, the gain that minimizes the symbol-error probability given by the Webb model
calculation of Eq. (10) may be different from the gain that minimizes the symbol-error probability given
by the Gaussian model calculation of Eq. (13). The Monte Carlo simulation for the Webb model also
uses the optimum gain value obtained through minimizing Eq. (10).

Figures 7 through 11 show the resulting graphs of Pe versus n̄s with optimized G. The most obvious
difference between the optimized and fixed-gain results is the improvement in performance around one
operating point of interest, Pe = 0.02. For fixed gain, this error rate requires n̄s = 37, 38, 39, 50, and 99
(for backgrounds n̄b = 0.01, 0.1, 1, 10, and 100, respectively), whereas for optimized gain, the required
average signal count is reduced to n̄s = 19, 21, 31, 48, and 97. Thus, a 3-dB improvement is achieved at
the lowest background photon level by adjusting the APD gain. The results shown in Figs. 7 through 11
also differ from the fixed-gain results in that the separation between the Webb and Gaussian models is
more pronounced, especially at lower values of n̄b. We see that the Gaussian curve crosses over the Webb
curve, so that the Gaussian model underbounds the simulated error probability for smaller values of n̄s
and overbounds the simulated error probability for larger values of n̄s (although in Figs. 7 and 8 the
crossover points are off the scale). The regions of n̄s in which these two cases occur vary depending on
the value of n̄b, with the crossover point increasing as n̄b increases. Note that in Fig. 7, with n̄b = 0.01,
the Gaussian approximation always overbounds the simulated error probability. The upper bound on
the Webb error probability, Eq. (10), again is shown to approximate the exact value well as Pe becomes
small.

Figure 12 shows the curves of n̄s versus n̄b for fixed values of Pe. Comparing Figs. 6 and 12, it may
be seen that for high-intensity background levels (n̄b ≥ 100), both the optimized and fixed-gain systems
require similar levels of average signal photons per pulse in order to achieve a given level of performance.
This result also could have been predicted from the fact that the fixed-gain system was optimized for
the high-background case. However, for low levels of background radiation, as would be encountered
during nighttime operation, the advantage of optimizing the gain clearly is demonstrated. Figure 12 also
shows how the Gaussian curve is very close to the Webb curve for high background-photon levels at these
error probabilities, but either overbounds or underbounds the Webb results in the other regions. Finally,
the gain values that were used in the variable gain calculations are plotted in Fig. 13, which shows the
decrease and convergence of optimum gain values as both n̄b and n̄s increase.

IV. Conclusions

In this article, we presented performance curves for 256-ary PPM signals received by APD detectors
in the presence of Gaussian thermal noise. We compared the performance in terms of PPM symbol-
error probability of the Gaussian approximation for APD output electrons to the more accurate Webb
model. Although the Gaussian model leads to much simpler analysis and faster calculations, it does not
consistently overpredict or underpredict error probability over all regions. This may lead to problems in
link analysis when link budgets are tight. On the other hand, using the actual Webb statistics for the APD
output modeling results in a complicated mixture process when Gaussian thermal noise is added. The
exact symbol-error probability is very difficult and time-consuming to calculate when using this mixture
process, thereby necessitating use of an upper bound that does converge to the exact error probability as
it becomes smaller. Use of this bound with the Webb model will result in a more consistent prediction
of receiver performance, keeping in mind that the bound is pessimistic for larger values of required Pe
(Pe > 0.001). We also demonstrated through our calculation that, at lower background-photon levels,
optimization of APD gain results in significant improvement in receiver performance.
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